MapReduce: Simplified Data Processing on Large Clusters

Stacey Heideloff
CIS 601
9/18/2018
Motivation

- Big Data Processing Challenges
 - Size of Data
 - Speed of Processing

- Why using a single machine is too slow
 - CPU contention
 - Data must wait until CPU is ready for it
 - RAM limitations
 - Data is way too big to fit in RAM
 - Disk I/O wastes a lot of time
Solution

- Parallel processing
 - Distribute the job among many machines
 - Machines concurrently process the portions they are assigned

- Benefits
 - Speed
 - Add computational power: more CPUs working at once
 - Reduce the size of data processed by each machine
 - Fault Tolerance
 - Can replicate portions of work to reduce the impact of a machine failure
What is MapReduce?

- MapReduce Programming Model
 - Conception
 - Proposed by Jeffrey Dean and Sanjay Ghemawat (Google)
 - Paper published in 2004
 - Paradigm
 - Parallelizes and executes one computation on a large cluster of machines
 - Programmer only needs to know the logic of his computation
 - Does not need to know how to parallelize that computation
 - Uses commodity machines to process the data
 - Scale
 - Can process TBs of data on 1000s of machines
What is MapReduce?

Components

- MapReduce Library
 - Parallelization logic
 - Fault-tolerance
 - Data distribution
 - Load balancing

- Runtime System
 - Partitions input data
 - Schedules execution across cluster of machines
 - Manages inter-machine communication
 - Handles machine failures

- User-Written Map and Reduce Functions
 - Contains the user’s computation logic
 - Code that extracts desired information from the input data
MapReduce Programming Model

USER CODE

Map Function
- Transforms data into intermediate data
- Input: key/value pair
- Output: intermediate key/value pair

Reduce Function
- Invoked via an iterator
- Input: intermediate key/value pair
- Output: 0 or 1 output value per invocation of Reduce

MAPREDUCE CODE

MapReduce Library
- Groups together all intermediate values associated with the same intermediate key
- Passes results to Reduce function

MapReduce Specification Object
- Provide names of input and output files
- Optional tuning parameters for MapReduce
MapReduce Parameters

- **M**: Number of Input files
 - Pick a number that will divide each task into 16-64MB input data
 - Should be much larger than the number of worker machines
- **R**: Number of Output files
 - Make a small multiple of the number of worker machines
- **Example Values**
 - Worker machines = 2,000
 - $M = 200,000$
 - $R = 5,000$
Word Count Example

Find the number of occurrences of each word in a large collection of documents

<table>
<thead>
<tr>
<th>Input</th>
<th>Map</th>
<th>Reduce</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Document Name, Text Content of Document)</td>
<td>(bar, {"1"}), (foo, {"1", "1", "1"})</td>
<td>bar: "1"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>foo: "3"</td>
</tr>
</tbody>
</table>

Output

{ (foo, "1"), (foo, "1"), (bar, "1"), (foo, "1") }

Pseudocode

```java
map(String key, String value):
    // key: document name
    // value: document contents
    for each word w in value:
        EmitIntermediate(w, "1");

reduce(String key, Iterator values):
    // key: a word
    // values: a list of counts
    int result = 0;
    for each v in values:
        result += parseInt(v);
    Emit(AsString(result));
```
Google’s MapReduce Implementation

Individual Machine Specifications
- Dual-processor x86
- 2-4 GB Memory
- Linux

Number of Machines
- Large number of clusters
- Per cluster: 100s or 1,000s

Network
- Switched Ethernet
- 100 Mbps or 1 Gbps speed at machine-level

Storage
- Inexpensive IDE disks attached directly to individual machines

File System
- GFS (Google File System): Distributed file system
Google File System (GFS)

- Distributed File System
 - Created to work with large files
 - Designed for scalability
 - Uses clusters of commodity machines

- Nodes
 - Master: holds metadata for files
 - Chunkservers: store and serve files
 - Clients: request files

- Files
 - Broken into chunks
 - Chunk size: 64 MB
 - 64-bit chunk handle: global identifier
 - Replicated - 3 copies of each file

https://computer.howstuffworks.com/internet/basics/google-file-system.htm
Execution Steps

- MapReduce Library splits input files into M pieces
 - Optional user parameter for piece size
 - Typically 16-64 MB per piece

- MapReduce Library starts up multiple copies of the program on a cluster of machines
 - One copy designated “master”
 - All other copies “workers” assigned to the master

- “Master” assigns each worker a Map or Reduce Task
Execution Steps

- “Map” workers read contents of one piece of the split input
 - Parse key/value pairs out of the data
 - Pass each pair to the user-defined “Map” function
 - “Map” function produces intermediate key/value pairs
 - Intermediate pairs buffered in memory
Execution Steps

- Partitioning function divides pairs into R regions
 - Buffered pairs periodically written to disk
 - Locations of pairs on local disk given to “Master”
 - “Master” responsible for forwarding the locations to the “Reduce” workers
Execution Steps

- “Reduce” workers read intermediate data from local disks of the “Map” workers with remote procedure calls
 - Sort intermediate data by key
 - Group all occurrences of same key together
 - If data is too large to fit in memory, external sort is used
- “Reduce” worker finds each unique intermediate key
 - Passes key/value pair to user’s “Reduce” function
 - Output of “Reduce” function appended to final output file for this partition
Execution Steps

- “Master” wakes up user program and returns control to user code
 - output is received in R output files
 - one file per reduce task
 - output can be used:
 - in a distributed application that expects partitioned files
 - as input to another MapReduce call
MapReduce - Map Function

Distributed File System

Input File

Data Chunk
Data Chunk
Data Chunk
Data Chunk

Machine 1
Run
Map

Machine 2
Run
Map

Distributed File System

Input File

Data Chunk
Data Chunk
Data Chunk
Data Chunk

Buffered Result

MapResult
MapResult
MapResult

Machine 1

Machine 2
MapReduce - Partitioning Function

Distributed File System

Input File
- Data Chunk
- Data Chunk
- Data Chunk
- Data Chunk

Buffered Result
- MapResult
- MapResult
- MapResult
- MapResult

Intermediate Data
- IntResult
- IntResult

Partition

Machine 1
Machine 2
Machine 1
Machine 2
MapReduce - Reduce Function

Distributed File System

Input File
- Data Chunk
- Data Chunk
- Data Chunk
- Data Chunk

Intermediate Data
- IntResult
- IntResult

Global File System

Output File
- Reduce Result

Output File
- Reduce Result

Machine 1
- request data
- read Machine 1 data

Machine 2
- request data
- read Machine 2 data

Machine 3
- Run Reduce

Machine 4
- Run Reduce
Beyond Map and Reduce Functions

- Partitioning Function
 - Decides which output file a reduce result is placed in
 - Default partitioning function = hash(intermediate key) mod R
 - R = number of output files specified by user
 - User can provide their own function
 - Ordering guarantee: output files will be sorted within each partition

- Combiner Function
 - Optional user-specified function to be performed on “Map” workers
 - Partially processes “Map” results to reduce amount of data sent over network
 - Typically is same logic used in “Reduce” function
 - Significantly speeds up some MapReduce operations
Beyond Map and Reduce Functions

 Skipping Bad Records
 - Bugs in user code can cause “Map” or “Reduce” to crash on certain records
 - MapReduce Library can detect which records cause crashes and skip them
 - Option is best for cases when it is acceptable to ignore a few records
 - Ex: Statistical analysis on a large data set

 Status Information
 - “Master” task runs a server that exports status pages for users
 - Tasks completed
 - Tasks in progress
 - Bytes of input / intermediate data / output
 - Processing rates
 - Worker failures (with tasks being processed during failure)
 - Helps to debug user code
Implementation Challenges

- Machine Failures
 - With more machines involved, failure of at least one machine more likely

- Communication Costs
 - Network bandwidth major factor in speed of computation
 - Slow communication of results between machines could erode speed advantages of faster sub-computations

- “Straggler” Machines
 - Machines that take an unusually long time to complete its map or reduce task
 - Lengthens the total time taken by MapReduce computation
Google’s Solutions

- Machine Failures -> Rescheduling
 - “Master” periodically pings workers
 - “Master” marks unresponsive workers as failed
 - Reschedules failed worker’s tasks on another machine
 - Completed map tasks are re-executed because output is unavailable to the network
 - Completed reduce tasks are not re-executed because output is safe on global file system
 - If “master” task fails, entire MapReduce computation is aborted

- Communication Costs -> GFS
 - Input data is stored on local disks of machines in cluster
 - GFS stores several copies of each data block on different machines
 - “Master” can schedule map tasks on/near machines that contain the input data
 - Network bandwidth not used on local reads
Google’s Solutions

- “Straggler” Machines -> Backup Tasks
 - “Master” schedules backup executions of in-progress tasks
 - Near the end of the MapReduce operation when few tasks remain
 - Task marked as complete when either original or backup execution finishes
 - Tends to only increase computational resources by a few percent
 - Significantly reduces time to complete large MapReduce operations
The same MapReduce computation is run in (a) and (b)

- Sort ~1 TB of data

Effect of Backup Tasks

- (a) Total time: 891 sec
- (b) Total time: 1283 sec
 - 5 stragglers remain around 960 sec
 - 44% increase!
Performance Measurements

- The same MapReduce computation is run in (a) and (b)
 - Sort ~1 TB of data

- Effect of Killing Tasks
 - (a) Total time: 891 sec
 - (b) Total time: 933 sec
 - tasks re-executed on the killed workers themselves
 - only 5% increase

(a) Normal execution
(c) 200 tasks killed
Influence of This Paper

- **Apache Hadoop**
 - Open-source implementation of MapReduce
 - Designed for clusters of commodity machines
 - Written in Java
 - HDFS: Hadoop Distributed File System
 - First released in 2006

- **Cloud Vendors**
 - Microsoft: HDInsight on Azure
 - Amazon: Elastic MapReduce (EMR)
 - IBM: InfoSphere Insights
 - Cloudera
 - HortonWorks
 - MapR

https://en.wikipedia.org/wiki/Apache_Hadoop
Paper Referenced

- Title: MapReduce: Simplified Data Processing on Large Clusters
- Year: 2004
- Authors: Jeffrey Dean and Sanjay Ghemawat (Google, Inc.)
Thank You!