Apache Hadoop Goes Realtime at Facebook

Guide -
Dr. Sunny S. Chung

Presented By-
Anand K Singh
Himanshu Sharma
Index

- Problem with Current Stack
- Apache Hadoop and Hbase
- Zookeeper
- Applications of HBase at Facebook
- Future of Hbase at Facebook
- Conclusion
Problems with Current stack

- MySQL is stable, but...
 - Not inherently distributed
 - Table size limitation
 - Inflexible schema

- Hadoop is scalable, but...
 - MapReduce is slow and difficult
 - Does not support random writes
 - Poor support for random reads
Optimal solutions

- High-throughput, persistent key-value
 - Tokyo Cabinet
- Large scale data warehousing
 - Hive/Hadoop

- Solution: A near realtime Hadoop/HBase that is modified to provide scalability, consistency, availability and a compatible data model.
Need of data store

- Requirements for Facebook Messages
 - Massive datasets, with large subsets of cold data
 - Elasticity and high availability
 - Strong consistency within a datacenter
 - Fault isolation
Introduction to HBase

- Hbase: A NoSQL database that utilizes an on-disk column storage format.
- Hbase USP: Provides fast key-based access to a specific cell or data or a range of cells.
- Based on Google's BigTable but extends it
- Has Row atomicity and read-modify-write consistency
- Simplifies a lot of tasks related to distributed databases.
- Tagline: Random access to web-scale data
Why Hbase?

- In early 2010, engineers at FB compared DBs
 - Apache Cassandra, Apache HBase, Sharded MySQL
- Compared performance, scalability, and features
 - HBase gave excellent write performance, good reads
 - HBase already included many good features
 - Atomic read-modify-write operations
 - Multiple shards per server
 - Bulk importing
Apache HBase

- Originally part of Hadoop
 - HBase adds random read/write access to HDFS

- Required some Hadoop changes for FB usage
 - File appends
 - HA NameNode
 - Read optimizations
HBase System Overview
Introduction to Zookeeper

- Zookeeper: A software service for a distributed environment that coordinates and configures different machines in a centralized way.
- A change is not considered successful until it has been written to a quorum
- A leader is elected within the ensemble for conflicts
- In HBase, ZooKeeper coordinates and shares state between the Masters and RegionServers.
- Tagline: Enables highly reliable distributed coordination
HDFS – Hadoop Distributed File System

- HDFS was originally designed to be a file system to support offline MapReduce application.
- In HDFS scalability and streaming performance are most critical.
- HDFS linear scalability and fault tolerance results in huge cost savings across the enterprise.

PROBLEM:

- The design of HDFS has a single master – the NameNode. Whenever the master is down, the HDFS cluster is unusable until the NameNode is back up.
Realtime HDFS - AvatarNode
Realtime HDFS – Logging

- Enhancements to Transaction logging:
 - Conventional HDFS
 - Change: Let the StandbyNode always know about block ids.
 - Avoidance of partial reads between Active and Standby node
Applications of Hbase at Facebook

- Titan
- Facebook Messages
Facebook Messaging

- High write throughput for every message, like instant message, SMS, and e-mail Search indexes for all.
- Denormalized Schema

- A product at massive scale on day one
 - 6k messages a second
 - 50k instant messages a second
 - 300TB data growth/month compressed
Puma

- Introduction
- Realtime MapReduce
- Facebook Insights
Puma

- **Realtime Data Pipeline**
 - Utilize existing log aggregation pipeline (Scribe-HDFS)
 - Extend low-latency capabilities of HDFS (Sync+PTail)
 - High-throughput writes (HBase)

- **Support for Realtime Aggregation**
 - Utilize HBase atomic increments to maintain roll-ups
 - Store checkpoint information directly in HBase
Puma as Realtime MapReduce

- Map phase with PTail
 - Divide the input log stream into N shards
 - First version only supported random bucketing
 - Now supports application-level bucketing

- Reduce phase with HBase
 - Every row+column in HBase is an output key
 - Aggregate key counts using atomic counters
 - Can also maintain per-key lists or other structures
Puma for Facebook Insights

- Realtime URL/Domain Insights
 - Domain owners can see deep analytics for their site
 - Clicks, Likes, Shares, Comments, Impressions
 - Detailed demographic breakdowns
 - Top URLs calculated per-domain and globally

- Massive Throughput
 - Billions of URLs
 - > 1 Million counter increments per second
ODS
Operational Data Store

- System metrics (CPU, Memory, IO, Network)
- Application metrics (Web, DB, Caches)
- Facebook metrics (Usage, Revenue)
 - Easily graph this data over time
 - Supports complex aggregation, transformations, etc.

- Difficult to scale with MySQL
 - Millions of unique time-series with billions of points
 - Irregular data growth patterns
Future of Hbase at Facebook

- User and Graph Data
Hbase at Facebook

- Looking at Hbase to augment MySQL
 - Only single row ACID from MySQL is used
 - DBs are always fronted by an in-memory cache
 - HBase is great at storing dictionaries and lists

- Database tier size determined by IOPS
 - HBase does only sequential writes
 - Lower IOPs translate to lower cost
 - Larger tables on denser, cheaper, commodity nodes
Conclusion

- Facebook investing in Realtime Hadoop/HBase
 - Work of a large team of Facebook engineers
 - Close collaboration with open source developers
 - One addition was YARN
 - A powerful cluster resource management
 - Added the High Availability feature to NameNode by introducing the Hot/Standyby NameNode.