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In a series of papers, Codd [7-9] has introduced the 
relational model of data and discussed its advantages in 
terms of simplicity, symmetry,  data independence, and 
semantic completeness. The relational "model suggests 
that all data in a database management  system may be 
represented by a set of named tables, or "relations." 
Within each relation, the columns are named, and the 
ordering of rows is considered immaterial. Each row 
describes one instance of the concept or entity described 
by the relation. The rows must be distinct; duplicates 
are not allowed. Each relation has a column or set of 
columns, called the primary key, whose values must 
be unique in the relation. An example of a relation 
describing the employees of a company is shown in 
Figure 1. The primary key of this relation is MNO. 

A number  of  languages have been proposed for 
expressing queries against a relational database [2, 4, 
5, 9, 10]. These languages fall into two major  categories: 
those based on relational algebra and those based on 
relational calculus. Both the relational algebra and 
the relational calculus were originally proposed by 
Codd [8]. The relational algebra is based on a series of  
high level procedural operators such as " join" and 
"project ion."  The relational calculus is a nonprocedural  
language based on the mathematical  quantifiers "for  
all" (V) and "there exists" (7:1). 

SEQUEL, the language discussed in this paper, is a 
relational query language based on neither relational 
algebra nor relational calculus. SEQUEL is a nonpro- 
cedural language which does not make use of quanti- 
tiers or other mathematical  concepts; rather, SEQUEL 
uses a block structured format  of English key words 
(hence the acronym "Structured English Query 
Language") .  SEQUEL is intended for interactive, prob- 
lem solving use by people who have need for interac- 
action with a large database but who are not trained 
programmers.  This class of  users includes urban plan- 
ners, sociologists, accountants, and other professionals. 
The objective of  the language is to provide a simple, 
easy-to-learn means of expressing the primitive actions 
used by people to obtain information from tables, such 
as " look up a value in a column."  SEQUEL and its com- 
panion language, SQUARE, have been shown to be rela- 
tionalty complete, i.e. equivalent in power to Codd 's  
relational calculus [2, 5, 8]. 

This paper describes a prototype system, now run- 
ning at the IBM Research Labora tory  in San Jose, 
California, which implements a version of SEQUEL in 
the environment of  XRM, a relational memory  system. 
The goals of the project were: (a) to gain operational 
experience in using the SEQUEL language; (b) to develop 
and test algorithms for optimizing retrieval operations 
in response to an ad hoc query; (c) to gain experience 
and evaluate the use of  the XRM interface; (d) to demon- 
strate the power of  the SEQUEL language; and (e) to 
furnish a test bed for the evaluation of new functions. 
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Fig. l. 

EMP: 
I 

VINO !NAME DNO MGR TITLE SAL 
- - i  

[01 ABEL 19 510 DIRECTOR 11800( 
L02 BAKER i19 525 DIRECTOR 1900( 

CARLSON 19 525 CLERK 8000 
DOE 19 525 VICE-PRES 2200( 
EASTMAN 20 525 CHAIRMAN 2400( 

The SEQUEL Interpreter prototype was designed for 
rapid implementation by a small group. The design 
and implementation were done in eight months. The 
part-time efforts of four people were involved, amount- 
ing to about 22 man-months. A fifth person provided 
part-time support in correcting XRm bugs. 

The version of SEQUEL implemented by the proto- 
type includes facilities for query, insertion, deletion, 
and update of relations, as well as the ability to create 
new relations and to control the set of indexes main- 
tained on the database. The query features of this 
version of SEQUEL are described in the next section. 
The following sections review the key features of XRm 
and describe the organization and algorithms of the 
SEQUEL interpreter. Finally, the directions of future 
work are summarized. 

The Sequel Language 

The query facilities of SEQUEL will be introduced by 
a series of example queries against a database which 
describes a small company. The database contains the 
following tables: 

EMP (MNO, NAME, DNO, MGR, TITLE, SAL) 
DEPT (DNO, DNAME, LOC) 

The EMP table gives each employee's man number, 
name, title, salary, the man number of his manager, 
and his department number. The DEPT table gives, 
for each department, its number, name, and the city 
in which it is located. 

The simplest operation in SEQUEL is called a map- 
ping, and corresponds to the act of finding the value 
in a table which is associated with another, known 
value. The basic mapping is illustrated by Ql.  

Q1. Find the department numbers of departments which are 
located in Newberg. 

SELECT DNO 
FROM DEPT 
WHERE LOC = 'NEWBERG'; 

The mapping consists of three keywords: SELECT, 
FROM, and WHERE;  and three parameters: the 
table to which the query is directed (EMP), the names 
of the items to be returned (DNO), and the condition 
to be satisfied (LOC -- 'NEWBERG' ) .  This simple 
format is called a query block and is used throughout 
the SEQUEL language. 

SEQUEL allows the basic mapping to be extended in 
several ways. A query may specify more than one 

item to be selected, and may specify a complex boolean 
condition in the W H E R E  clause, as illustrated by Q2. 

Q2. List the name and manager of all employees in department 19 
who earn more than 15000. 

SELECT NAME, MGR 
FROM EMP 
WHERE DNO = 19 
AND SAL >15000; 

If  the W H E R E  clause is omitted from the query 
block, the query returns all values from the selected 
column of the table. Duplicate values are deleted from 
the list. This feature, illustrated by Q3, corresponds to 
Codd's "projection" operator. 

Q3. List all the different department numbers in the employee 
table. 

SELECT DNO 
FROM EMP; 

If the user wishes to select the entire row whenever 
the WHERE-condit ion is satisfied, he may use the 
abbreviation S E L E C T * .  This feature, illustrated by 
Q4, corresponds to Codd's  "restriction" operator. 

Q4. List the EMP rows for those employees who earn more than 
20000. 

SELECT • 
FROM .EMP 
WHERE SAL > 20000; 

SEQUEL allows the user to specify any of several 
built-in functions in the SELECT clause of a query 
block. These functions include SUM, COUNT, AVG, 
MAX, and MIN. The function is performed over the 
set of rows which satisfy the W H E R E  clause. For 
example: 

Q5. Find the average salary of employees in department 17. 
SELECT AVG(SAL) 
FROM EMP 
WHERE DNO = 17; 

The W H E R E  clause may be used either to com- 
pare a value with a constant (as above) or to test a 
value for inclusion in a set, as illustrated by Q6. Set 
inclusion is denoted by the word IN. 

Q6. List the names of employees who are in department 17, 24, 
or 32. 

SELECT NAME 
FROM EMP 
WHERE DNO IN (17, 24, 32); 

The ability to test for set inclusion in a W H E R E  
clause enables the user to nest query blocks inside each 
other, using the output of one mapping as the input 
to another, as illustred by Q7. (For syntactic purposes, 
each query block is terminated by a semicolon. Since 
one block is nested inside another in this example, 
two semicolons are required.) 

Q7. List the names of employees who work for departments which 
are located in Newberg. 

SELECT NAME 
FROM EMP 
WHERE DNO IN 

SELECT DNO 
FROM DEPT 
WHERE LOC = 'NEWBERG';; 
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In this query, the inner mapping finds the set of  
department  numbers of  all those departments in New- 
berg; the outer mapping then returns the names of 
those employees whose department  number matches 
any number in this set. In this way, query blocks may 
be nested inside each other to many levels of nesting. 

I t  is occasionally necessary in constructing a SEQUEL 
query to indicate a correlation between two query 
blocks. For  this purpose, SEQUEL allows a correlation 
variable to be placed in the F R O M  clause of a query 
block. The correlation variable represents a row of the 
indicated table, and may be used in other query blocks 
to refer back to this row. For  example: 

Q8. Find names of employees who earn more than their manager. 
SELECT NAME 
FROM E IN EMP 
WHERE SAL > 

SELECT SAL 
FROM EMP 
WHERE MNO = E.MGR;; 

The outer block returns the name of employee E 
whenever E's  salary is greater than the value returned 
by the inner block. The inner block finds the salary of  
E's  manager  by a simple mapping, referring to E by 
means of the correlation variable. 

The usefulness of the correlation variable is further 
illustrated by Q9, which also shows how the • abbrevia- 
tion (meaning "entire row") may be used with a built-in 
function: 

Q9. List the department numbers and names of departments 
having more than ten employees. 

SELECT DNO, DNAME 
FROM D IN DEPT 
WHERE 10 < 

SELECT COUNT (,) 
FROM EMP 
WHERE DNO = D.DNO;; 

Some queries call for information to be returned 
which cannot be obtained by simply selecting items 
f rom a table or using a built-in function. For  example, 
a user may ask for a list of  employee names together 
with the names of the departments in which they work. 
This information is not all present in a single table; 
the employee names are in the EMP table and the 
department  names are in the DEPT table. The correla- 
tion between the two must be done by means of the 
column DNO,  which appears  in both tables. When the 
information needed by a query cannot  be obtained by 
simple selection, SEQUEL allows the user to place an 
arbitrary variable called a "computed  variable" in the 
SELECT clause. A special C O M P U T E  clause is then 
used to give the definition of the computed variable, 
using a nested query block. The solution to the above 
example is shown in QI0.  

Q10. List employee names together with the names of the depart- 
ments in which they work. 

SELECT NAME,Q 
FROM E IN EMP 
COMPUTE Q = 

SELECT DNAME 
FROM DEPT 
WHERE DNO = E.DNO;; 

The computed variable used together with built-in 
functions gives a powerful query capability, as il- 
lustrated by Q11. 

Qll. List for each department its department number, name, and 
the average salary of its employees. 

SELECT DNO, DNAME, Q 
FROM D IN DEPT 
COMPUTE Q = 

SELECT AVG (SAL) 
FROM EMP 
WHERE DNO = D.DNO;; 

XRM Relational Memory System 

The SEQUEL Interpreter relies upon the XRM (Ex- 
tended n-ary Relational Memory  [12]) system for 
storage and retrieval of data in the form of n-ary 
relations. XRM was developed at the IBM Cambridge 
Scientific Center. XRM in turn is based upon the Cam- 
bridge RM (Relational Memory)  system [13] which 
provides: (1) storage of variable length byte strings 
(entities) addressed by numerical identifiers, and (2) 
efficient storage and retrieval of numerical binary rela- 
tions (sets of pairs of  integers). 

RM is a single-user system. It  is low level in the 
sense that  the interface with a calling program is in 
terms of internal identifiers instead of external names 
and that parameters  for controlling physical layout 
are available at the interface. 

Data  in RM is stored in pages of 4096 bytes. One set 
of pages is used to store the entities. A data identifier for 
an entity is made up of a page address and an offset in 
a page header area. The identified header position con- 
tains a pointer to the location of the data on the page. 
Another set of  pages is used to store the binary rela- 
tions. The identifier of a relation is made up of a page 
address and an offset in a page header area which con- 
tains a pointer to the first tuple (pair). On an RM rela- 
tion page, the first elements of the tuples of  a relation 
are connected by a chain of  pointers and are accessed 
in order of increasing magnitude, as shown in Figure 2. 

All tuples which contain the same first element 
value are represented by an ordered chain of second 
element values connected to the first element value. 
The actual physical locations of the first element values 
on the page are determined by a hash coding technique 
which allows rapid access to a tuple with a given first 
element value. For  large relations, elaborate overflow 
techniques allow access to any tuple with at most  
two page accesses. RM provides for sequential retrieval 
of  all pairs of  a binary relation or of  those with a given 
first element value, as well as an efficient test for the 
existence of a given pair. 

The identifiers are automatically allocated by RM. 
They constitute an address space. RM supports mul- 
tiple address spaces with independent SAVE and 
R E S T O R E  capabilities. This is very useful for imple- 
menting workspaces [14]. 
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Fig. 2. RM relation page. Sequel Interpreter Proto type  
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XRM is built upon binary RM. Each tuple of an n-ary 
relation is stored as a byte string in RM "ent i ty"  space. 
The string contains a fixed length integer for each 
column of the relation. This number  is an actual value 
if the domain is composed of integers. I f  not, it is gen- 
erally the identifier of another  entity, containing the 
value. Those entities corresponding to the same domain 
constitute a "class" relation. A class relation provides 
for quick access f rom the value to the identifier. It  is 
implemented by using a binary relation whose first 
element is a hash function of the value and whose second 
element is the identifier of  the stored value. Since hash 
collisions are possible, the actual value must be re- 
trieved for verification. 

A tuple can be rapidly retrieved by means of its 
identifier, now called a tuple identifier, or tid. As in 
Codd 's  Gamma-0  [1], there is a master relation which 
contains information describing each of the other rela- 
tions. The relation identifier (rid) of a relation is the 
rid of a tuple in the master  relation, and that  tuple 
describes the relation. It  gives information about  the 
type, degree, column encoding, inversions etc. Asso- 
ciated with each n-ary relation is a binary relation 
which permits rapid access to a particular tuple of  the 
n-ary relation given its pr imary key value. Correspond- 
ing to each n-tuple is a tuple of  the binary relation 
whose elements are a hash function of the key value 
and the rid of  the n-tuple. This is similar to the CALC 
KEY function in D B T G  [6]. Rapid access to tuples 
containing a particular value in a particular column 
can also be provided by an inversion relation. An in- 
version is a binary relation whose elements are a column 
value and a rid. When an inversion is specified for a 
column, the system automatically updates it after 
changes to the contents of  the n-ary relation. 

XRM provides for retrieval of  all the tuples of a rela- 
tion by a sequence of  N E X T  commands  and for re- 
trieval of  a tuple given its tid or its primary key value. 
The tid's corresponding to tuples with a given value in 
a given column of an n-ary relation may be sequentially 
retrieved if an inversion relation exists for the column. 

The SEQUEL Interpreter implements the SEQUEL 
language using XRM for physical representation of the 
relations. The interpreter must translate nonprocedural,  
set oriented statements into an efficient sequence of 
tuple-at-a-time XRM commands.  To this end, several 
optimization rules are employed. The basic objective 
of the optimization is to minimize the response time 
for a query. In order to do this we try to minimize the 
number of tuple retrieval operations. We would prefer 
to have as an objective the minimization of the number 
of disk accesses, on the assumption that we can retrieve 
and process many tuples from a page in high speed 
storage in the time of one disk access to a page. How- 
ever, two factors make this objective impractical. First, 
page accessing cannot be directly controlled through 
the XRM interface, although it can be indirectly influ- 
enced by parameters which influence the physical 
placement of  inserted data. Second, in a virtual storage 
system being shared among many users, the Interpreter 
cannot control the residency of pages in real high speed 
storage. The Interpreter algorithms do affect the num- 
ber of tuple retrieval operations and we have assumed 
that disk accesses and response time will be correlated 
with this number. 

The SEQUEL Interpreter is a PL/I program. Its main 
sections are a Parser, an Optimizer, and a Scanner. 
The Parser is of the LALR(k) type. It is based upon the 
work of Lalonde and many others I11]. We have added 
semantic routines which cause a SEQUEL statement to 
be transformed into a direct representation of the cor- 
responding parse tree. Each W H E R E  clause is repre- 
sented as a binary tree of  predicates connected by A N D  
and OR nodes. The Optimizer and the Scanner work 
with the parse tree to interpret the SEQUEL statement. 
The function of the Optimizer is to minimize tuple 
retrieval operations by working as much as possible 
with lists of tuple tid's retrieved by means of inversion 
relations. An inversion relation will henceforth be 
called an index. The Optimizer determines for each 
query block a scan list consisting of the tid's of only 
those tuples which might satisfy the predicate tree of 
the block. Tuples which can be shown by indexes not 
to satisfy the block are excluded from the scan list. 
For  some predicate combinations the scan list repre- 
sents precisely those tuples which satisfy the block. 
In this case, we say the block is "completely resolvable 
by index." In other cases, the tuples represented by 
the scan list must be materialized and tested against the 
actual predicates of the block. This operation is per- 
formed by the Scanner. The Scanner also prepares an 
output list for the block by selecting the desired at- 
tributes from the successful tuples or by computing the 
values of  built-in functions. 

The interface between the user and the Interpreter 
is the UFI (User Friendly Interface). The UEZ operates 
the display scope. It  accepts the user's SEQUEL state- 
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merit, transmits it to the Interpreter and displays the 
results to the user. In general, the result of a query is a 
table of  data, and the uFI presents a "window" on the 
table, displaying as many rows and columns as will 
fit on the screen. A typical display resulting from the 
query SELECT*  F R O M  EMP; looks very much 
like the example in Figure 1. The "window" can be 
moved left, right, up, and down under user control to 
display the whole table. 

The Interpreter maintains a set of  catalog relations 
for translation between the user's names for relations 
and columns and their internal encoding in XRM. Data 
type (character string or integer) and other information 
is also kept for the domains on which columns are de- 
fined. These catalog relations are updated in response 
to SEQUEL statements which create and destroy relations 
and inversions. A relation must be completely defined 
before any tuples are inserted. In the prototype In- 
terpreter no changes may be made to the definition of a 
relation after tuples have been inserted. 

Most  catalog maintenance and database mainte- 
nance statements translate rather directly into XRM 
commands.  However, some INSERT,  UPDATE,  and 
DELETE statements may contain a query block (e.g. 
to identify the tuples to be updated.) For these, the 
Optimizer and Scanner are called to process the query 
block. 

The basic tool for minimizing tuple retrieval opera- 
tions in interpreting a query is the use of  an index 
(inversion) to retrieve a list of  rids of tuples having a 
given value in a given column of a relation. Indexes 
may be used with predicates of  type "column-name = 
value" or "column-name IN  value-list". Since indexes 
involve extra overhead during insertions and deletions, 
they will only be maintained for those columns antici- 
pated to appear in many query predicates. Therefore, 
for predicates of  the right type, the Interpreter must 
still determine if an index exists. Where indexes can be 
used, A N D  and OR combinations of  predicates can be 
evaluated by union and intersection operations on lists 
of  tid's. These operations are more efficient in XRM 
than the corresponding operations on the tuples. How- 
ever, an index will not always be used, even though it 
corresponds to a predicate of  the above mentioned 
types. This is because it may be OR 'd  with a predicate, 
such as "column-name > value", which cannot use an 
index and therefore requires a complete scan of all the 
tuples. An index will only be used if it reduces the 
number  of tuples which must be retrieved. 

The Optimizer algorithms will be described in 
terms of three steps, called Steps A, B, and C, and three 
auxiliary algorithms: the Index Selection, List Com- 
bining, and Test Tree algorithms. 

Step A 
In evaluating a query block Step A of the Optimizer 

classifies each predicate of  the query block into one 
of five types, based on how the predicate must be re- 

solved. (To "resolve" a predicate means to find the set 
of  tuples which satisfy it.) The five predicate types are: 

Type P1. Predicates which can be immediately re- 
solved by an existing index. They have the form 
"column-name = value" or "column-name IN 
value-list". (An example is D N O  = 27 in the EMP 
relation, if there is an index on DNO.)  Such a predicate 
may not contain a correlation to an outer query block. 
It  may, however, contain a nested query block if the 
nested query does not involve any correlation to a 
higher level block. An example is: 

DNO IN 
SELECT DNO 
FROM DEPT 
WHERE LOC = 'NEWBERG'; 

Such a nested query will be completely evaluated during 
the classification of the predicate from the containing 
block by a recursive call to the Optimizer. The nested 
query will be in effect replaced by the list of  values re- 
suiting f rom the evaluation, as if the predicate had 
been D N O  IN(10, 27, 42). A type PI predicate will 
later be, in effect, replaced by a tid-list retrieved f rom 
the index. I f  the predicate contains a value-list, the tid- 
lists corresponding to each value will be unioned. A 
special case of type P1 is when the column-name 
constitutes the primary key of the relation. In this 
case there will be no index but the single tid correspond- 
ing to each value can be efficiently retrieved. 

Type P2. Predicates which cannot be resolved by an 
existing index, but which do not involve correlation to a 
higher level query block. An example is D N O  = 27 
if there is no index on D N O  in EMP. Another  example 
is D N O  > 27 even if there is an index on DNO,  since 
an indefinite value-list is involved. A P2 predicate may 
contain a nested query that does not involve higher 
level correlation, as for type P1. A P2 predicate re- 
quires a scan of the relation in order to determine which 
tuples satisfy it. However, before the scan is made we 
will try to reduce the scan list by using PI predicates, 
as described below. 

Type P3. Predicates which contain a correlation to 
a higher level query block but which can be resolved 
by an index if a tuple from the higher block is given. 
An example of a query block containing such a predi- 
cate is: 

SELECT NAME FROM D IN DEPT WHERE 10 < 
SELECT COUNT (*) FROM EMP WHERE DNO = 
D.DNO;; 

This query finds the names of departments  having more 
than 10 employees. The predicate D N O  = D. D N O  
is type P3 if there is an index on D N O  in EMP. Each 
time a tuple from DEPT is tested during a scan of 
DEPT,  its D N O  value will replace D . D N O  in the 
predicate on EMP and the predicate will be resolved 
into a rid-list by means of the index. As with type P1, 
a special case of type P3 involves a column-name which 
is the primary key of the relation. 
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Type P4. The same as type P3 except that the index 
does not exist. If  the P3 predicate is later determined to 
be "usable," in the sense that its position in the predi- 
cate tree allows it to reduce the search space of tuples, 
it will be converted into a type P3 by dynamic creation 
of a temporary index. This is done because an index 
can be created in XRM with a single scan of the relation. 
Lack of the index would require a scan of the relation 
for each tuple f rom the higher level block. 

Type P5. Predicates which involve a correlation to a 
higher level block and which cannot be resolved by an 
index. These are like P2 predicates except that they 
involve the correlation. P5 predicates require a scan 
over the relation (or the reduced scan list if available) 
for every tuple in the higher level block to which the 
predicate is correlated. 

Note that the predicates of nested query blocks are 
classified during recursive calls to the Optimizer. If  such 
a query block contains no correlation to a higher level 
block it will be completely evaluated by the call and 
will be effectively replaced by the evaluation result. I f  a 
block involves a higher level correlation, its evaluation 
must await invocation of the recursive Scanner. The 
outer (highest level) block cannot contain upward 
correlations; hence, its predicates can only be of type 
P1 or P2. 

After step A of the Optimizer, we go to step B if there 
are no correlation predicates (P3, P4, or P5). Other- 
wise we go to step C. 

Step B 
In step B the query block is known to have only P1 

and P2 predicates. Step B will proceed to find the actual 
tuples which satisfy the query block. This process will, 
in turn, be done in three steps: 
B1. First, we decide which index resolvable predicates 

(Pl 's)  are capable of limiting the number of tuples 
which must be fetched to evaluate the block. This 
process employs the Index Selection Algorithm. 

B2. Next, we form a scan list for the query block, 
consisting of the tid's of those tuples which must 
be fetched and examined to evaluate the block. 
This step uses the List Combining Algorithm. 

B3. Finally, we actually fetch the tuples on the scan 
list and test them for satisfaction of the predicate 
tree by means of the Test Tree Algorithm. 

We illustrate this process by means of an example 
query. Suppose that the query block being processed is 
Q12 below. 

Q12. 
SELECT • 
FROM EMP 
WHERE DNO = 19 
AND MGR = 525 
AND (TITLE= 'DIRECTOR' OR SAL > 20000); 

Although we have chosen an outer level query block 
for our example, step B applies equally well to inner, 

Fig. 3. 

EMP: 

T1-- 
T2-- 
T3-- 
T4-- 
T5-- 

MNO NAME 

101 lABEL 
102 IBAKER 
103 ICARLSON 
lO4 1DOE 
105 IEASTMAN 

DNO MGR TITLE SAL 

19 510 DIRECTOR 1800C 
19 1525 ]DIRECTOR 11900~ 
19 525 CLERK 18000 
19 525 VICE-PRES 12200C 
120 [525 ICHAIRMAN[2400C 

nested query blocks. Suppose that Q 12 is to be evaluated 
with respect to the database of Figure 3, in which the 
tid's of the tuples are represented as T 1 , . . . ,  T5. In 
step B1, we will decide which indexes are useful in re- 
solving the query block. To do so, we mark  each PI 
in the predicate tree as resolvable (R) and each P2 as 
not resolvable (N) and then call the Index Selection 
Algorithm. This algorithm generates a list, called the 
P*-list, of predicates which should be resolved by index. 
The algorithm is applied to the root node of the predi- 
cate tree. It may invoke itself recursively for lower 
nodes. The P*-list is computed according to the fol- 
lowing rules: 

a. I f  the node is an R-predicate, then P* = the R-predi- 
cate. 

b. I f  the node is an N-predicate, then P* is null. 

c. I f  the node is an A N D  node, call the algorithm re- 
cursively for its immediate left and right descendant 
nodes, producing predicate lists P*L and P*R re- 
spectively. Then P* = the concatenation of lists 
P*L and P*R. This is because a tuple which fails to 
satisfy either descendant of an A N D  node cannot 
satisfy the A N D  node and need not be checked 
against the other descendant. Therefore an index 
which reduces the scan space for either descendant 
reduces it for the A N D  node. The scan list of tuples 
which satisfy an A N D  node is the intersection of the 
lists for the descendants. 

d. I f  the node is an OR node, produce lists P*L and 
P*R as in c. I f  either P*L or P*R is null, then P* 
is null. I f  neither P*L nor P*R is null, then P* = the 
concatenation of lists P*L and P*R. This is because 
a tuple which fails to satisfy one descendant of  an 
OR node may still satisfy the OR if it satisfies the 
other descendant. A scan list obtained from an 
index for one descendant of  an OR node does not 
limit the scan space for the other descendant. The 
scan list of tuples which satisfy an OR node is 
the union of the lists for the descendants. 

In our example Q12, let us suppose that the first 
three predicates (those on DNO,  MGR,  and TITLE) 
are index resolvable (hence we label them R) and the 
fourth predicate (on SAL) is not resolvable by index 
(hence we label it N). Then Figure 4 shows how the 
Index Selection Algorithm computes the P*-list for 
the query block. 
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We see from Figure 4 that only the first two pred- 
icates have been found useful for limiting the scan 
list for this query block. The predicate T ITLE = 
' D I R E C T O R ' ,  even though it is resolvable by index, 
cannot limit the set of tuples to be scanned because it is 
ORed with another non-index-resolvable predicate. 

We now proceed to step B2, which will compute 
the actual scan list for the query block. First, we use 
the chosen indexes to resolve each predicate on the 
P*-list into a list of the tid's of  tuples which satisfy the 
predicate. Next, we combine these lists into a scan list 
for the block by means of the List Combining Algorithm. 
This algorithm passes over the predicate tree and labels 
each AND,  OR, or predicate node with either R, S, 
or N. A label of  R means that the node and all its 
descendants are resolved. Associated with an R node 
is a tid-list of those tuples which satisfy the node. We 
denote an R node and its associated tid-list Li as R(Li). 
A label of  S means that some descendants of the node are 
not resolved, but there exists a scan list containing 
tid's of  those tuples which could satisfy the node, 
excluding those tuples which are known not to satisfy 
the predicate subtree below the node. An S node and 
its associated scan list Lj are denoted by S(Lj). A label 
of N means that the node is not resolved and no scan 
list smaller than the whole relation is known for the 
node. The List Combining Algorithm begins by labeling 
each predicate node either R(Li) or N, depending on 
whether the predicate has been resolved. The algorithm 
then labels the A N D  and OR nodes according to the 
following rules: 
a. I f  the immediate descendants of the node are not yet 

labeled, call the List of  Combining Algorithm re- 
cursively to label them. 

b. I f  the node in question is an A N D  node, choose its 
label from the following table: 

Label of descendant #2 

R(L2) S(L2) N 

Label (R(LI) R(L1 n L2) S(L1 n L2) S(L1) 
of IS(L1) S(L1 n L2) S(L1 n L2) S(LI) 

descendant#1 N S(L2) S(L2) N 

c. I f  the node in question is an OR node, choose its 
label from the following table: 

Label of descendant #2 

R(L2) S(L2) N 

Label {R((LI) ~N((LI UL2) S(L1 UL2) N 
of L1) L1 U L2) S(L1 U L2) N 

descendant N N 
#1 

Figure 5 shaws how the List Combining Algorithm 
labels the nodes of the predicate tree for our example 
Q12. The first two predicates are resolved into tid-lists 
by means of their indexes and the scan list for the query 
block is found to be the intersection of these two tid- 
lists. 

Fig. 4. 
AND (P*: DNO=19, MGR=525) 

/ \  
(R) DNO=19 AND (P*: MGR=525) 

(R) MGR=525 OR (P*: null) 

(R) TITLE='DIRECTOR ' (N) SAL>20000 

Fig. 5. 
AND (S: T2, T3, T4) 

DNO=19 AND (S: T2, T3, T4, T5) 
(R: T1, T2, T3, T4) / ~ 

MGR=525 OR (N) 
(R: T2, T3, T4, T5) / ~ 

TITLE='DIRECTOR' SAL>20000 

(N) (N) 

The evaluation of the query block is now completed 
by step B3, which performs the necessary scan. I f  the 
query block is already fully resolved into a tid-list (root 
node is labeled R), then it is only necessary to scan 
over those tuples on the list and select the indicated 
fields for output or computat ion of the indicated built-in 
function. However,  if  the root node of the tree is 
labelled N or S, as in our example, it is necessary to fetch 
each tuple on the scan list (or the whole relation if the 
label is N) and test it against the predicate tree by 
means of the Test Tree Algorithm. The Test Tree Algo- 
ri thm is a recursive algorithm which is applied to the 
root node of the predicate tree. It  works as follows: 

a. I f  an unresolved node (labeled S or N) has 
descendants, they are tested by applying the function 
recursively. The node truth value is then found by ap- 
plying the node label operator (AND or OR) to the 
descendant values. 

b. For nodes which have an R-list, we merely test 
the tuple's tid for inclusion in the R-list, returning a 
true or false value. This is an efficient operation in XRM. 

c. For  unresolved predicates, we test the actual 
column values of the tuple against the predicate, re- 
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turning true or false. I f  the predicate has a nested query 
block which has not yet been evaluated, we make the 
tuple column values available to correlation terms and 
call the Scanner recursively. This will complete the 
evaluation of the nested block and we can then com- 
plete the testing of the tuple against the predicate. 
Since testing for inclusion in a list is generally more 
efficient than testing a tuple against a predicate, the 
List Combining Algorithm switches descendants of an 
A N D  or OR node if necessary when only one de- 
scendant is resolved to ensure that the left hand de- 
scendant is the resolved one. The Test Tree function 
checks the left-hand descendant first and can often 
logically eliminate the need to test the right-hand one. 

In our example QI2,  step B3 will scan over the 
tuples T2, T3, and T4 and apply the Test Tree Algorithm 
to each. Tuple T2 will be successful because it is in the 
R-lists of the first two predicates and its T ITLE is 
' D I R E C T O R ' .  Tuple T3 will fail because it fails to 
satisfy both the predicates on T ITLE and SAL. Tuple 
T4 will succeed. Hence the final result of our query 
block Q12 is tuples T2 and T4. I f  the query block had 
specified some built-in function such as SUM(SAL),  
it would have been computed incrementally as each 
tuple was tested against the predicate tree. 

Step C 
When the query block has some type P3, P4, or P5 

predicates, step C of the Optimizer is called. The current 
query block is known to be nested inside some higher 
level block to which it is correlated by one or more 
predicates. Therefore the current block cannot be com- 
pletely evaluated at this time. Instead, it will be evalu- 
ated repeatedly by the Scanner, once for each tuple in 
the scan list of the higher level block. We wish to 
minimize the set of tuples which must be retrieved and 
tested upon each reevaluation of the current block. 
This set may be limited in the following ways: (1) by 
resolving P l ' s  and P2's immediately, since they do not 
depend upon the higher level block-- this  resolution will 
be done once; and (2) upon each reevaluation of the 
current block, by resolving P3's via their indexes. 

Since Pl 's ,  P2's, P3's, and P4's (if the P4's are con- 
verted to P3's) are potentially capable of reducing the 
size of  our scan list upon each reevaluation, we wish 
to find out exactly which ones do in fact limit the scan 
list by virtue of  their position on the predicate tree. 
This may be done by marking all Pl ' s ,  P2's, P3's, and 
P4's as resolvable (R) and all P5's as not resolvable 
(N) and calling the Index Selection Algorithm. The 
resulting P* list tells us which predicates to resolve in 
advance of reevaluation or via index during reevalua- 
tion. All P l ' s  on the P*-list are resolved immediately. 
I f  any P l ' s  were resolved, we call the List Combining 
Algorithm to generate a scan list. I f  there are any 
P2's, a special single scan of the scan list is called and 
the tuples are tested against each P2, generating a re- 
solved tid-list for each such P2. I f  a P2 contains a nested 

query block with correlations to the current block, 
the Scanner is called recursively, as in step C of the 
Test Tree function. The P2 lists are then combined 
with PI lists, if possible, by the List Combining Algo- 
rithm. I f  there are P4's on the P* list, they are con- 
verted to P3's by creation of a temporary index. This 
is as far as we can go in preparing the current block 
for repeated evaluation by the Scanner. If  the current 
block is nested in a higher level block, control is returned 
to the Optimizer predicate classification function at the 
higher level with a notation that reevaluation is neces- 
sary. 

When the Scanner is called for the outer (highest 
level) block at the end of Optimizer step B, it initiates a 
scan of the tuples on the scan list if the block is not 
yet fully resolved. This function has been described in 
the description of step B. When the Scanner is called 
for the reevaluation of a nested block.in the context 
of a higher level scan, several preparatory steps should 
take place: 

a. Resolve all PYs via their index. This is possible 
because a tuple from the higher level block is avail- 
able. 

b. If  there are PYs, then call the List Combining 
Algorithm to generate a new, more restrictive scan 
list. 

c. I f  the block is not yet resolved (because of P5's), 
initiate a scan of the scan list. This may involve 
calling the Scanner recursively for nested queries 
containing correlations. 

Note again that the Scanner performs the function of 
generating the requested form of output from each 
query block. This may be a built-in function or a tem- 
porary relation containing some or all of the columns of 
the designated relation. If  a scan of the scan list is 
required, the output is generated as tuples are qualified. 
If  no scan is required, a special output generation scan 
may be initiated. 

Future Plans 

Tests with a thousand:tuple database indicate that 
use of indexes does speed up retrieval, even when all 
the pages containing the relation have to be accesged 
to finally retrieve the tuples which qualify. 

We are now engaged in the design of a multiple- 
user SEQUEL research prototype. We hope that this 
system will demonstrate the practical feasibility of a 
relational system for both application programs written 
by programmers  and ad hoc queries written by non- 
programmers.  It  will have the interlocks required for 
shared access by several users. It  will also have the 
authorization and recovery features required by a 
multiple-user environment. We are planning to provied 
facilities for making integrity assertions about  the 
database which are automatically checked on update. 
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A more  powerfu l  and  efficient re la t ional  m e m o r y  
system will evolve f rom the XRM experience.  

Improvemen t s  and  add i t ions  to the implemented  
version of  the SEQUEL language  will be made  to br ing  it 
closer to the publ i shed  version [5]. In  par t icu la r ,  
a r i thmet ic  ope ra to r s  and  the G R O U P  BY ope ra to r  
will be implemented .  A n o t h e r  i m p o r t a n t  feature  will 
be efficient coupl ing  to a host  language,  such as APL 
or PL/I, SO tha t  the full power  of  a p r o g r a m m i n g  
language  can be appl ied  to the da ta  re turned  by a 
SEQUEL query.  
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P r o g r a m m i n g  G.  M a n a c h e r  
Techniques  Ed i to r  

Merging with 
Parallel Processors 
Ffinic~ Gavril 
University of Illinois 

Consider two linearly ordered sets A, B, ] A  [ = m, 
I B [  = n, m _< n, and p, p _< m, para l le l  processors 
working synchronously. The paper presents an algorithm 
for merging A and B with the p parallel processors, 
which requires at most 2[log2(2m -}- 1)] + [3m/p] -t- 
[m/p][log2(n/m)] steps. I f  n = 2~m (/3 an integer), 
the algorithm requires at most 2[log2(m -I- 1)] -[- 
[m/p](2 + ~) steps. In the case where m and n are of the 
same order of magnitude, i.e. n = k m  with k being a 
constant, the algorithm requires 2[log2(m -t- 1)] + 
[m/p](3 -t- k) steps. These performances compare very 
favorably with the previous best parallel merging 
algorithm, Batcher's algorithm, which requires 
nip + ((m + n)/2p)log2m steps in the general case and 
km/p  -}- ((k q- 1)/2)(m/p)log. . ,m in the special case 
where n = km. 

Key  Words and Phrases.  parallel processing, para l le l  
merging ,  para l le l  binary insertion 
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