
Introduction

Management / H. Morgan
Database Systems Editor

Implementation of a
Structured English
Query Language
M.M. Astrahan and D.D. Chamberlin
IBM Research Division, San Jose

The relational model of data, the XRM Relational
Memory System, and the S E Q U E L language have been
covered in previous papers and are reviewed. S E Q U E L is
a relational data sublanguage intended for ad hoc
interactive problem solving by non-computer specialists.
A version of S E Q U E L that has been implemented in a
prototype interpreter is described. The interpreter is
designed to minimize the data accessing operations
required to respond to an arbitrary query. The
optimization algorithms designed for this purpose are
described.

Key Words and Phrases: relational model, query
language, nonprocedural language, database, data
structure, data organization

CR Categories: 3.74, 3.75, 4.22, 4.33, 4.34

Copyright @ 1975, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

A version of this paper was presented at the ACM SIGMOD
Conference on the Management of Data, San Jose, Calif., May
14-16, 1975.

Authors' address: IBM Research Division, Monterey & Cottle
Roads, San Jose, CA 95193.

580

In a series of papers, Codd [7-9] has introduced the
relational model of data and discussed its advantages in
terms of simplicity, symmetry, data independence, and
semantic completeness. The relational "model suggests
that all data in a database management system may be
represented by a set of named tables, or "relations."
Within each relation, the columns are named, and the
ordering of rows is considered immaterial. Each row
describes one instance of the concept or entity described
by the relation. The rows must be distinct; duplicates
are not allowed. Each relation has a column or set of
columns, called the primary key, whose values must
be unique in the relation. An example of a relation
describing the employees of a company is shown in
Figure 1. The primary key of this relation is MNO.

A number of languages have been proposed for
expressing queries against a relational database [2, 4,
5, 9, 10]. These languages fall into two major categories:
those based on relational algebra and those based on
relational calculus. Both the relational algebra and
the relational calculus were originally proposed by
Codd [8]. The relational algebra is based on a series of
high level procedural operators such as " join" and
"project ion." The relational calculus is a nonprocedural
language based on the mathematical quantifiers "for
all" (V) and "there exists" (7:1).

SEQUEL, the language discussed in this paper, is a
relational query language based on neither relational
algebra nor relational calculus. SEQUEL is a nonpro-
cedural language which does not make use of quanti-
tiers or other mathematical concepts; rather, SEQUEL
uses a block structured format of English key words
(hence the acronym "Structured English Query
Language") . SEQUEL is intended for interactive, prob-
lem solving use by people who have need for interac-
action with a large database but who are not trained
programmers. This class of users includes urban plan-
ners, sociologists, accountants, and other professionals.
The objective of the language is to provide a simple,
easy-to-learn means of expressing the primitive actions
used by people to obtain information from tables, such
as " look up a value in a column." SEQUEL and its com-
panion language, SQUARE, have been shown to be rela-
tionalty complete, i.e. equivalent in power to Codd 's
relational calculus [2, 5, 8].

This paper describes a prototype system, now run-
ning at the IBM Research Labora tory in San Jose,
California, which implements a version of SEQUEL in
the environment of XRM, a relational memory system.
The goals of the project were: (a) to gain operational
experience in using the SEQUEL language; (b) to develop
and test algorithms for optimizing retrieval operations
in response to an ad hoc query; (c) to gain experience
and evaluate the use of the XRM interface; (d) to demon-
strate the power of the SEQUEL language; and (e) to
furnish a test bed for the evaluation of new functions.

Communications October 1975
of Volume 18
the ACM Number 10

Fig. l.

EMP:
I

VINO !NAME DNO MGR TITLE SAL
- - i

[01 ABEL 19 510 DIRECTOR 11800(
L02 BAKER i19 525 DIRECTOR 1900(

CARLSON 19 525 CLERK 8000
DOE 19 525 VICE-PRES 2200(
EASTMAN 20 525 CHAIRMAN 2400(

The SEQUEL Interpreter prototype was designed for
rapid implementation by a small group. The design
and implementation were done in eight months. The
part-time efforts of four people were involved, amount-
ing to about 22 man-months. A fifth person provided
part-time support in correcting XRm bugs.

The version of SEQUEL implemented by the proto-
type includes facilities for query, insertion, deletion,
and update of relations, as well as the ability to create
new relations and to control the set of indexes main-
tained on the database. The query features of this
version of SEQUEL are described in the next section.
The following sections review the key features of XRm
and describe the organization and algorithms of the
SEQUEL interpreter. Finally, the directions of future
work are summarized.

The Sequel Language

The query facilities of SEQUEL will be introduced by
a series of example queries against a database which
describes a small company. The database contains the
following tables:

EMP (MNO, NAME, DNO, MGR, TITLE, SAL)
DEPT (DNO, DNAME, LOC)

The EMP table gives each employee's man number,
name, title, salary, the man number of his manager,
and his department number. The DEPT table gives,
for each department, its number, name, and the city
in which it is located.

The simplest operation in SEQUEL is called a map-
ping, and corresponds to the act of finding the value
in a table which is associated with another, known
value. The basic mapping is illustrated by Ql.

Q1. Find the department numbers of departments which are
located in Newberg.

SELECT DNO
FROM DEPT
WHERE LOC = 'NEWBERG';

The mapping consists of three keywords: SELECT,
FROM, and WHERE; and three parameters: the
table to which the query is directed (EMP), the names
of the items to be returned (DNO), and the condition
to be satisfied (LOC -- 'NEWBERG') . This simple
format is called a query block and is used throughout
the SEQUEL language.

SEQUEL allows the basic mapping to be extended in
several ways. A query may specify more than one

item to be selected, and may specify a complex boolean
condition in the W H E R E clause, as illustrated by Q2.

Q2. List the name and manager of all employees in department 19
who earn more than 15000.

SELECT NAME, MGR
FROM EMP
WHERE DNO = 19
AND SAL >15000;

If the W H E R E clause is omitted from the query
block, the query returns all values from the selected
column of the table. Duplicate values are deleted from
the list. This feature, illustrated by Q3, corresponds to
Codd's "projection" operator.

Q3. List all the different department numbers in the employee
table.

SELECT DNO
FROM EMP;

If the user wishes to select the entire row whenever
the WHERE-condit ion is satisfied, he may use the
abbreviation S E L E C T * . This feature, illustrated by
Q4, corresponds to Codd's "restriction" operator.

Q4. List the EMP rows for those employees who earn more than
20000.

SELECT •
FROM .EMP
WHERE SAL > 20000;

SEQUEL allows the user to specify any of several
built-in functions in the SELECT clause of a query
block. These functions include SUM, COUNT, AVG,
MAX, and MIN. The function is performed over the
set of rows which satisfy the W H E R E clause. For
example:

Q5. Find the average salary of employees in department 17.
SELECT AVG(SAL)
FROM EMP
WHERE DNO = 17;

The W H E R E clause may be used either to com-
pare a value with a constant (as above) or to test a
value for inclusion in a set, as illustrated by Q6. Set
inclusion is denoted by the word IN.

Q6. List the names of employees who are in department 17, 24,
or 32.

SELECT NAME
FROM EMP
WHERE DNO IN (17, 24, 32);

The ability to test for set inclusion in a W H E R E
clause enables the user to nest query blocks inside each
other, using the output of one mapping as the input
to another, as illustred by Q7. (For syntactic purposes,
each query block is terminated by a semicolon. Since
one block is nested inside another in this example,
two semicolons are required.)

Q7. List the names of employees who work for departments which
are located in Newberg.

SELECT NAME
FROM EMP
WHERE DNO IN

SELECT DNO
FROM DEPT
WHERE LOC = 'NEWBERG';;

581 Communications October 1975
of Volume 18
the ACM Number 10

In this query, the inner mapping finds the set of
department numbers of all those departments in New-
berg; the outer mapping then returns the names of
those employees whose department number matches
any number in this set. In this way, query blocks may
be nested inside each other to many levels of nesting.

I t is occasionally necessary in constructing a SEQUEL
query to indicate a correlation between two query
blocks. For this purpose, SEQUEL allows a correlation
variable to be placed in the F R O M clause of a query
block. The correlation variable represents a row of the
indicated table, and may be used in other query blocks
to refer back to this row. For example:

Q8. Find names of employees who earn more than their manager.
SELECT NAME
FROM E IN EMP
WHERE SAL >

SELECT SAL
FROM EMP
WHERE MNO = E.MGR;;

The outer block returns the name of employee E
whenever E's salary is greater than the value returned
by the inner block. The inner block finds the salary of
E's manager by a simple mapping, referring to E by
means of the correlation variable.

The usefulness of the correlation variable is further
illustrated by Q9, which also shows how the • abbrevia-
tion (meaning "entire row") may be used with a built-in
function:

Q9. List the department numbers and names of departments
having more than ten employees.

SELECT DNO, DNAME
FROM D IN DEPT
WHERE 10 <

SELECT COUNT (,)
FROM EMP
WHERE DNO = D.DNO;;

Some queries call for information to be returned
which cannot be obtained by simply selecting items
f rom a table or using a built-in function. For example,
a user may ask for a list of employee names together
with the names of the departments in which they work.
This information is not all present in a single table;
the employee names are in the EMP table and the
department names are in the DEPT table. The correla-
tion between the two must be done by means of the
column DNO, which appears in both tables. When the
information needed by a query cannot be obtained by
simple selection, SEQUEL allows the user to place an
arbitrary variable called a "computed variable" in the
SELECT clause. A special C O M P U T E clause is then
used to give the definition of the computed variable,
using a nested query block. The solution to the above
example is shown in QI0.

Q10. List employee names together with the names of the depart-
ments in which they work.

SELECT NAME,Q
FROM E IN EMP
COMPUTE Q =

SELECT DNAME
FROM DEPT
WHERE DNO = E.DNO;;

The computed variable used together with built-in
functions gives a powerful query capability, as il-
lustrated by Q11.

Qll. List for each department its department number, name, and
the average salary of its employees.

SELECT DNO, DNAME, Q
FROM D IN DEPT
COMPUTE Q =

SELECT AVG (SAL)
FROM EMP
WHERE DNO = D.DNO;;

XRM Relational Memory System

The SEQUEL Interpreter relies upon the XRM (Ex-
tended n-ary Relational Memory [12]) system for
storage and retrieval of data in the form of n-ary
relations. XRM was developed at the IBM Cambridge
Scientific Center. XRM in turn is based upon the Cam-
bridge RM (Relational Memory) system [13] which
provides: (1) storage of variable length byte strings
(entities) addressed by numerical identifiers, and (2)
efficient storage and retrieval of numerical binary rela-
tions (sets of pairs of integers).

RM is a single-user system. It is low level in the
sense that the interface with a calling program is in
terms of internal identifiers instead of external names
and that parameters for controlling physical layout
are available at the interface.

Data in RM is stored in pages of 4096 bytes. One set
of pages is used to store the entities. A data identifier for
an entity is made up of a page address and an offset in
a page header area. The identified header position con-
tains a pointer to the location of the data on the page.
Another set of pages is used to store the binary rela-
tions. The identifier of a relation is made up of a page
address and an offset in a page header area which con-
tains a pointer to the first tuple (pair). On an RM rela-
tion page, the first elements of the tuples of a relation
are connected by a chain of pointers and are accessed
in order of increasing magnitude, as shown in Figure 2.

All tuples which contain the same first element
value are represented by an ordered chain of second
element values connected to the first element value.
The actual physical locations of the first element values
on the page are determined by a hash coding technique
which allows rapid access to a tuple with a given first
element value. For large relations, elaborate overflow
techniques allow access to any tuple with at most
two page accesses. RM provides for sequential retrieval
of all pairs of a binary relation or of those with a given
first element value, as well as an efficient test for the
existence of a given pair.

The identifiers are automatically allocated by RM.
They constitute an address space. RM supports mul-
tiple address spaces with independent SAVE and
R E S T O R E capabilities. This is very useful for imple-
menting workspaces [14].

582 Communications October 1975
of Volume 18
the ACM Number 10

Fig. 2. RM relation page. Sequel Interpreter Proto type

tuples
VI,V4
V2,V5
V2,V6
V2,V7
V3,V8

V I<V2<V3

V5<V6<V7

1 - - - -
I

rid

1

. 1
r
I

XRM is built upon binary RM. Each tuple of an n-ary
relation is stored as a byte string in RM "ent i ty" space.
The string contains a fixed length integer for each
column of the relation. This number is an actual value
if the domain is composed of integers. I f not, it is gen-
erally the identifier of another entity, containing the
value. Those entities corresponding to the same domain
constitute a "class" relation. A class relation provides
for quick access f rom the value to the identifier. It is
implemented by using a binary relation whose first
element is a hash function of the value and whose second
element is the identifier of the stored value. Since hash
collisions are possible, the actual value must be re-
trieved for verification.

A tuple can be rapidly retrieved by means of its
identifier, now called a tuple identifier, or tid. As in
Codd 's Gamma-0 [1], there is a master relation which
contains information describing each of the other rela-
tions. The relation identifier (rid) of a relation is the
rid of a tuple in the master relation, and that tuple
describes the relation. It gives information about the
type, degree, column encoding, inversions etc. Asso-
ciated with each n-ary relation is a binary relation
which permits rapid access to a particular tuple of the
n-ary relation given its pr imary key value. Correspond-
ing to each n-tuple is a tuple of the binary relation
whose elements are a hash function of the key value
and the rid of the n-tuple. This is similar to the CALC
KEY function in D B T G [6]. Rapid access to tuples
containing a particular value in a particular column
can also be provided by an inversion relation. An in-
version is a binary relation whose elements are a column
value and a rid. When an inversion is specified for a
column, the system automatically updates it after
changes to the contents of the n-ary relation.

XRM provides for retrieval of all the tuples of a rela-
tion by a sequence of N E X T commands and for re-
trieval of a tuple given its tid or its primary key value.
The tid's corresponding to tuples with a given value in
a given column of an n-ary relation may be sequentially
retrieved if an inversion relation exists for the column.

The SEQUEL Interpreter implements the SEQUEL
language using XRM for physical representation of the
relations. The interpreter must translate nonprocedural,
set oriented statements into an efficient sequence of
tuple-at-a-time XRM commands. To this end, several
optimization rules are employed. The basic objective
of the optimization is to minimize the response time
for a query. In order to do this we try to minimize the
number of tuple retrieval operations. We would prefer
to have as an objective the minimization of the number
of disk accesses, on the assumption that we can retrieve
and process many tuples from a page in high speed
storage in the time of one disk access to a page. How-
ever, two factors make this objective impractical. First,
page accessing cannot be directly controlled through
the XRM interface, although it can be indirectly influ-
enced by parameters which influence the physical
placement of inserted data. Second, in a virtual storage
system being shared among many users, the Interpreter
cannot control the residency of pages in real high speed
storage. The Interpreter algorithms do affect the num-
ber of tuple retrieval operations and we have assumed
that disk accesses and response time will be correlated
with this number.

The SEQUEL Interpreter is a PL/I program. Its main
sections are a Parser, an Optimizer, and a Scanner.
The Parser is of the LALR(k) type. It is based upon the
work of Lalonde and many others I11]. We have added
semantic routines which cause a SEQUEL statement to
be transformed into a direct representation of the cor-
responding parse tree. Each W H E R E clause is repre-
sented as a binary tree of predicates connected by A N D
and OR nodes. The Optimizer and the Scanner work
with the parse tree to interpret the SEQUEL statement.
The function of the Optimizer is to minimize tuple
retrieval operations by working as much as possible
with lists of tuple tid's retrieved by means of inversion
relations. An inversion relation will henceforth be
called an index. The Optimizer determines for each
query block a scan list consisting of the tid's of only
those tuples which might satisfy the predicate tree of
the block. Tuples which can be shown by indexes not
to satisfy the block are excluded from the scan list.
For some predicate combinations the scan list repre-
sents precisely those tuples which satisfy the block.
In this case, we say the block is "completely resolvable
by index." In other cases, the tuples represented by
the scan list must be materialized and tested against the
actual predicates of the block. This operation is per-
formed by the Scanner. The Scanner also prepares an
output list for the block by selecting the desired at-
tributes from the successful tuples or by computing the
values of built-in functions.

The interface between the user and the Interpreter
is the UFI (User Friendly Interface). The UEZ operates
the display scope. It accepts the user's SEQUEL state-

583 Communications October 1975
of Volume 18
the ACM Number 10

merit, transmits it to the Interpreter and displays the
results to the user. In general, the result of a query is a
table of data, and the uFI presents a "window" on the
table, displaying as many rows and columns as will
fit on the screen. A typical display resulting from the
query SELECT* F R O M EMP; looks very much
like the example in Figure 1. The "window" can be
moved left, right, up, and down under user control to
display the whole table.

The Interpreter maintains a set of catalog relations
for translation between the user's names for relations
and columns and their internal encoding in XRM. Data
type (character string or integer) and other information
is also kept for the domains on which columns are de-
fined. These catalog relations are updated in response
to SEQUEL statements which create and destroy relations
and inversions. A relation must be completely defined
before any tuples are inserted. In the prototype In-
terpreter no changes may be made to the definition of a
relation after tuples have been inserted.

Most catalog maintenance and database mainte-
nance statements translate rather directly into XRM
commands. However, some INSERT, UPDATE, and
DELETE statements may contain a query block (e.g.
to identify the tuples to be updated.) For these, the
Optimizer and Scanner are called to process the query
block.

The basic tool for minimizing tuple retrieval opera-
tions in interpreting a query is the use of an index
(inversion) to retrieve a list of rids of tuples having a
given value in a given column of a relation. Indexes
may be used with predicates of type "column-name =
value" or "column-name IN value-list". Since indexes
involve extra overhead during insertions and deletions,
they will only be maintained for those columns antici-
pated to appear in many query predicates. Therefore,
for predicates of the right type, the Interpreter must
still determine if an index exists. Where indexes can be
used, A N D and OR combinations of predicates can be
evaluated by union and intersection operations on lists
of tid's. These operations are more efficient in XRM
than the corresponding operations on the tuples. How-
ever, an index will not always be used, even though it
corresponds to a predicate of the above mentioned
types. This is because it may be OR 'd with a predicate,
such as "column-name > value", which cannot use an
index and therefore requires a complete scan of all the
tuples. An index will only be used if it reduces the
number of tuples which must be retrieved.

The Optimizer algorithms will be described in
terms of three steps, called Steps A, B, and C, and three
auxiliary algorithms: the Index Selection, List Com-
bining, and Test Tree algorithms.

Step A
In evaluating a query block Step A of the Optimizer

classifies each predicate of the query block into one
of five types, based on how the predicate must be re-

solved. (To "resolve" a predicate means to find the set
of tuples which satisfy it.) The five predicate types are:

Type P1. Predicates which can be immediately re-
solved by an existing index. They have the form
"column-name = value" or "column-name IN
value-list". (An example is D N O = 27 in the EMP
relation, if there is an index on DNO.) Such a predicate
may not contain a correlation to an outer query block.
It may, however, contain a nested query block if the
nested query does not involve any correlation to a
higher level block. An example is:

DNO IN
SELECT DNO
FROM DEPT
WHERE LOC = 'NEWBERG';

Such a nested query will be completely evaluated during
the classification of the predicate from the containing
block by a recursive call to the Optimizer. The nested
query will be in effect replaced by the list of values re-
suiting f rom the evaluation, as if the predicate had
been D N O IN(10, 27, 42). A type PI predicate will
later be, in effect, replaced by a tid-list retrieved f rom
the index. I f the predicate contains a value-list, the tid-
lists corresponding to each value will be unioned. A
special case of type P1 is when the column-name
constitutes the primary key of the relation. In this
case there will be no index but the single tid correspond-
ing to each value can be efficiently retrieved.

Type P2. Predicates which cannot be resolved by an
existing index, but which do not involve correlation to a
higher level query block. An example is D N O = 27
if there is no index on D N O in EMP. Another example
is D N O > 27 even if there is an index on DNO, since
an indefinite value-list is involved. A P2 predicate may
contain a nested query that does not involve higher
level correlation, as for type P1. A P2 predicate re-
quires a scan of the relation in order to determine which
tuples satisfy it. However, before the scan is made we
will try to reduce the scan list by using PI predicates,
as described below.

Type P3. Predicates which contain a correlation to
a higher level query block but which can be resolved
by an index if a tuple from the higher block is given.
An example of a query block containing such a predi-
cate is:

SELECT NAME FROM D IN DEPT WHERE 10 <
SELECT COUNT (*) FROM EMP WHERE DNO =
D.DNO;;

This query finds the names of departments having more
than 10 employees. The predicate D N O = D. D N O
is type P3 if there is an index on D N O in EMP. Each
time a tuple from DEPT is tested during a scan of
DEPT, its D N O value will replace D . D N O in the
predicate on EMP and the predicate will be resolved
into a rid-list by means of the index. As with type P1,
a special case of type P3 involves a column-name which
is the primary key of the relation.

584 Communications October 1975
of Volume 18
the A C M Number 10

Type P4. The same as type P3 except that the index
does not exist. If the P3 predicate is later determined to
be "usable," in the sense that its position in the predi-
cate tree allows it to reduce the search space of tuples,
it will be converted into a type P3 by dynamic creation
of a temporary index. This is done because an index
can be created in XRM with a single scan of the relation.
Lack of the index would require a scan of the relation
for each tuple f rom the higher level block.

Type P5. Predicates which involve a correlation to a
higher level block and which cannot be resolved by an
index. These are like P2 predicates except that they
involve the correlation. P5 predicates require a scan
over the relation (or the reduced scan list if available)
for every tuple in the higher level block to which the
predicate is correlated.

Note that the predicates of nested query blocks are
classified during recursive calls to the Optimizer. If such
a query block contains no correlation to a higher level
block it will be completely evaluated by the call and
will be effectively replaced by the evaluation result. I f a
block involves a higher level correlation, its evaluation
must await invocation of the recursive Scanner. The
outer (highest level) block cannot contain upward
correlations; hence, its predicates can only be of type
P1 or P2.

After step A of the Optimizer, we go to step B if there
are no correlation predicates (P3, P4, or P5). Other-
wise we go to step C.

Step B
In step B the query block is known to have only P1

and P2 predicates. Step B will proceed to find the actual
tuples which satisfy the query block. This process will,
in turn, be done in three steps:
B1. First, we decide which index resolvable predicates

(Pl 's) are capable of limiting the number of tuples
which must be fetched to evaluate the block. This
process employs the Index Selection Algorithm.

B2. Next, we form a scan list for the query block,
consisting of the tid's of those tuples which must
be fetched and examined to evaluate the block.
This step uses the List Combining Algorithm.

B3. Finally, we actually fetch the tuples on the scan
list and test them for satisfaction of the predicate
tree by means of the Test Tree Algorithm.

We illustrate this process by means of an example
query. Suppose that the query block being processed is
Q12 below.

Q12.
SELECT •
FROM EMP
WHERE DNO = 19
AND MGR = 525
AND (TITLE= 'DIRECTOR' OR SAL > 20000);

Although we have chosen an outer level query block
for our example, step B applies equally well to inner,

Fig. 3.

EMP:

T1--
T2--
T3--
T4--
T5--

MNO NAME

101 lABEL
102 IBAKER
103 ICARLSON
lO4 1DOE
105 IEASTMAN

DNO MGR TITLE SAL

19 510 DIRECTOR 1800C
19 1525]DIRECTOR 11900~
19 525 CLERK 18000
19 525 VICE-PRES 12200C
120 [525 ICHAIRMAN[2400C

nested query blocks. Suppose that Q 12 is to be evaluated
with respect to the database of Figure 3, in which the
tid's of the tuples are represented as T 1 , . . . , T5. In
step B1, we will decide which indexes are useful in re-
solving the query block. To do so, we mark each PI
in the predicate tree as resolvable (R) and each P2 as
not resolvable (N) and then call the Index Selection
Algorithm. This algorithm generates a list, called the
P*-list, of predicates which should be resolved by index.
The algorithm is applied to the root node of the predi-
cate tree. It may invoke itself recursively for lower
nodes. The P*-list is computed according to the fol-
lowing rules:

a. I f the node is an R-predicate, then P* = the R-predi-
cate.

b. I f the node is an N-predicate, then P* is null.

c. I f the node is an A N D node, call the algorithm re-
cursively for its immediate left and right descendant
nodes, producing predicate lists P*L and P*R re-
spectively. Then P* = the concatenation of lists
P*L and P*R. This is because a tuple which fails to
satisfy either descendant of an A N D node cannot
satisfy the A N D node and need not be checked
against the other descendant. Therefore an index
which reduces the scan space for either descendant
reduces it for the A N D node. The scan list of tuples
which satisfy an A N D node is the intersection of the
lists for the descendants.

d. I f the node is an OR node, produce lists P*L and
P*R as in c. I f either P*L or P*R is null, then P*
is null. I f neither P*L nor P*R is null, then P* = the
concatenation of lists P*L and P*R. This is because
a tuple which fails to satisfy one descendant of an
OR node may still satisfy the OR if it satisfies the
other descendant. A scan list obtained from an
index for one descendant of an OR node does not
limit the scan space for the other descendant. The
scan list of tuples which satisfy an OR node is
the union of the lists for the descendants.

In our example Q12, let us suppose that the first
three predicates (those on DNO, MGR, and TITLE)
are index resolvable (hence we label them R) and the
fourth predicate (on SAL) is not resolvable by index
(hence we label it N). Then Figure 4 shows how the
Index Selection Algorithm computes the P*-list for
the query block.

585 Communications October 1975
of Volume 18
the ACM Number 10

We see from Figure 4 that only the first two pred-
icates have been found useful for limiting the scan
list for this query block. The predicate T ITLE =
' D I R E C T O R ' , even though it is resolvable by index,
cannot limit the set of tuples to be scanned because it is
ORed with another non-index-resolvable predicate.

We now proceed to step B2, which will compute
the actual scan list for the query block. First, we use
the chosen indexes to resolve each predicate on the
P*-list into a list of the tid's of tuples which satisfy the
predicate. Next, we combine these lists into a scan list
for the block by means of the List Combining Algorithm.
This algorithm passes over the predicate tree and labels
each AND, OR, or predicate node with either R, S,
or N. A label of R means that the node and all its
descendants are resolved. Associated with an R node
is a tid-list of those tuples which satisfy the node. We
denote an R node and its associated tid-list Li as R(Li).
A label of S means that some descendants of the node are
not resolved, but there exists a scan list containing
tid's of those tuples which could satisfy the node,
excluding those tuples which are known not to satisfy
the predicate subtree below the node. An S node and
its associated scan list Lj are denoted by S(Lj). A label
of N means that the node is not resolved and no scan
list smaller than the whole relation is known for the
node. The List Combining Algorithm begins by labeling
each predicate node either R(Li) or N, depending on
whether the predicate has been resolved. The algorithm
then labels the A N D and OR nodes according to the
following rules:
a. I f the immediate descendants of the node are not yet

labeled, call the List of Combining Algorithm re-
cursively to label them.

b. I f the node in question is an A N D node, choose its
label from the following table:

Label of descendant #2

R(L2) S(L2) N

Label (R(LI) R(L1 n L2) S(L1 n L2) S(L1)
of IS(L1) S(L1 n L2) S(L1 n L2) S(LI)

descendant#1 N S(L2) S(L2) N

c. I f the node in question is an OR node, choose its
label from the following table:

Label of descendant #2

R(L2) S(L2) N

Label {R((LI) ~N((LI UL2) S(L1 UL2) N
of L1) L1 U L2) S(L1 U L2) N

descendant N N
#1

Figure 5 shaws how the List Combining Algorithm
labels the nodes of the predicate tree for our example
Q12. The first two predicates are resolved into tid-lists
by means of their indexes and the scan list for the query
block is found to be the intersection of these two tid-
lists.

Fig. 4.
AND (P*: DNO=19, MGR=525)

/ \
(R) DNO=19 AND (P*: MGR=525)

(R) MGR=525 OR (P*: null)

(R) TITLE='DIRECTOR ' (N) SAL>20000

Fig. 5.
AND (S: T2, T3, T4)

DNO=19 AND (S: T2, T3, T4, T5)
(R: T1, T2, T3, T4) / ~

MGR=525 OR (N)
(R: T2, T3, T4, T5) / ~

TITLE='DIRECTOR' SAL>20000

(N) (N)

The evaluation of the query block is now completed
by step B3, which performs the necessary scan. I f the
query block is already fully resolved into a tid-list (root
node is labeled R), then it is only necessary to scan
over those tuples on the list and select the indicated
fields for output or computat ion of the indicated built-in
function. However, if the root node of the tree is
labelled N or S, as in our example, it is necessary to fetch
each tuple on the scan list (or the whole relation if the
label is N) and test it against the predicate tree by
means of the Test Tree Algorithm. The Test Tree Algo-
ri thm is a recursive algorithm which is applied to the
root node of the predicate tree. It works as follows:

a. I f an unresolved node (labeled S or N) has
descendants, they are tested by applying the function
recursively. The node truth value is then found by ap-
plying the node label operator (AND or OR) to the
descendant values.

b. For nodes which have an R-list, we merely test
the tuple's tid for inclusion in the R-list, returning a
true or false value. This is an efficient operation in XRM.

c. For unresolved predicates, we test the actual
column values of the tuple against the predicate, re-

586 Communications October 1975
of Volume 18
the ACM Number 10

turning true or false. I f the predicate has a nested query
block which has not yet been evaluated, we make the
tuple column values available to correlation terms and
call the Scanner recursively. This will complete the
evaluation of the nested block and we can then com-
plete the testing of the tuple against the predicate.
Since testing for inclusion in a list is generally more
efficient than testing a tuple against a predicate, the
List Combining Algorithm switches descendants of an
A N D or OR node if necessary when only one de-
scendant is resolved to ensure that the left hand de-
scendant is the resolved one. The Test Tree function
checks the left-hand descendant first and can often
logically eliminate the need to test the right-hand one.

In our example QI2, step B3 will scan over the
tuples T2, T3, and T4 and apply the Test Tree Algorithm
to each. Tuple T2 will be successful because it is in the
R-lists of the first two predicates and its T ITLE is
' D I R E C T O R ' . Tuple T3 will fail because it fails to
satisfy both the predicates on T ITLE and SAL. Tuple
T4 will succeed. Hence the final result of our query
block Q12 is tuples T2 and T4. I f the query block had
specified some built-in function such as SUM(SAL),
it would have been computed incrementally as each
tuple was tested against the predicate tree.

Step C
When the query block has some type P3, P4, or P5

predicates, step C of the Optimizer is called. The current
query block is known to be nested inside some higher
level block to which it is correlated by one or more
predicates. Therefore the current block cannot be com-
pletely evaluated at this time. Instead, it will be evalu-
ated repeatedly by the Scanner, once for each tuple in
the scan list of the higher level block. We wish to
minimize the set of tuples which must be retrieved and
tested upon each reevaluation of the current block.
This set may be limited in the following ways: (1) by
resolving P l ' s and P2's immediately, since they do not
depend upon the higher level block-- this resolution will
be done once; and (2) upon each reevaluation of the
current block, by resolving P3's via their indexes.

Since Pl 's , P2's, P3's, and P4's (if the P4's are con-
verted to P3's) are potentially capable of reducing the
size of our scan list upon each reevaluation, we wish
to find out exactly which ones do in fact limit the scan
list by virtue of their position on the predicate tree.
This may be done by marking all Pl ' s , P2's, P3's, and
P4's as resolvable (R) and all P5's as not resolvable
(N) and calling the Index Selection Algorithm. The
resulting P* list tells us which predicates to resolve in
advance of reevaluation or via index during reevalua-
tion. All P l ' s on the P*-list are resolved immediately.
I f any P l ' s were resolved, we call the List Combining
Algorithm to generate a scan list. I f there are any
P2's, a special single scan of the scan list is called and
the tuples are tested against each P2, generating a re-
solved tid-list for each such P2. I f a P2 contains a nested

query block with correlations to the current block,
the Scanner is called recursively, as in step C of the
Test Tree function. The P2 lists are then combined
with PI lists, if possible, by the List Combining Algo-
rithm. I f there are P4's on the P* list, they are con-
verted to P3's by creation of a temporary index. This
is as far as we can go in preparing the current block
for repeated evaluation by the Scanner. If the current
block is nested in a higher level block, control is returned
to the Optimizer predicate classification function at the
higher level with a notation that reevaluation is neces-
sary.

When the Scanner is called for the outer (highest
level) block at the end of Optimizer step B, it initiates a
scan of the tuples on the scan list if the block is not
yet fully resolved. This function has been described in
the description of step B. When the Scanner is called
for the reevaluation of a nested block.in the context
of a higher level scan, several preparatory steps should
take place:

a. Resolve all PYs via their index. This is possible
because a tuple from the higher level block is avail-
able.

b. If there are PYs, then call the List Combining
Algorithm to generate a new, more restrictive scan
list.

c. I f the block is not yet resolved (because of P5's),
initiate a scan of the scan list. This may involve
calling the Scanner recursively for nested queries
containing correlations.

Note again that the Scanner performs the function of
generating the requested form of output from each
query block. This may be a built-in function or a tem-
porary relation containing some or all of the columns of
the designated relation. If a scan of the scan list is
required, the output is generated as tuples are qualified.
If no scan is required, a special output generation scan
may be initiated.

Future Plans

Tests with a thousand:tuple database indicate that
use of indexes does speed up retrieval, even when all
the pages containing the relation have to be accesged
to finally retrieve the tuples which qualify.

We are now engaged in the design of a multiple-
user SEQUEL research prototype. We hope that this
system will demonstrate the practical feasibility of a
relational system for both application programs written
by programmers and ad hoc queries written by non-
programmers. It will have the interlocks required for
shared access by several users. It will also have the
authorization and recovery features required by a
multiple-user environment. We are planning to provied
facilities for making integrity assertions about the
database which are automatically checked on update.

587 Communications October 1975
of Volume 18
the ACM Number 10

A more powerfu l and efficient re la t ional m e m o r y
system will evolve f rom the XRM experience.

Improvemen t s and add i t ions to the implemented
version of the SEQUEL language will be made to br ing it
closer to the publ i shed version [5]. In par t icu la r ,
a r i thmet ic ope ra to r s and the G R O U P BY ope ra to r
will be implemented . A n o t h e r i m p o r t a n t feature will
be efficient coupl ing to a host language, such as APL
or PL/I, SO tha t the full power of a p r o g r a m m i n g
language can be appl ied to the da ta re turned by a
SEQUEL query.

Acknowledgments
The au thors wish to acknowledge the fol lowing

con t r ibu t ions in the p r e p a r a t i o n o f this paper . R a y
Boyce p rov ided his manage r i a l skil ls and wrote a
number o f the s torage accessing subrout ines unt i l his
un t imely dea th in June 1974. Paul Fehde r pa r t i c ipa ted
in the system design and wrote the parser semant ics
and the da t a defini t ion and ma in tenance rout ines .
R a y m o n d Lor ie ma in t a ined the XRM interface and pro-
v ided very helpful advice dur ing debugging. W.F . King,
our d e p a r t m e n t manager , con t r ibu ted signif icant ly to
the op t imiza t ion a lgor i thms as well as p rov id ing
manage r i a l suppor t .

References
1. Bjorner, D., Codd, E.F., Deckert, K.L., and Traiger, I.L.
The Gamma-0 N-ary relational data base interface: specifications of
objects and operations. Res. Rep. RJ 1200, IBM Research
Laboratory, San Jose, Calif., April 1973.
2. Boyce, R.F., Chamberlin, D.D., King, W.F., and Hammer,
M.M. Specifying queries as relational expressions. Proc. ACM
SIGPLAN/SIGIR Interface Meeting, Gaithersburg, Md., Nov.
1973.
3. Boyce, R.F. and Chamberlin, D.D. Using a structured English
query language as a data definition facility. Res. Rep. RJ 1318,
IBM Research Laboratory, San Jose, Calif., Dec. 1973.
4. Bracchi, G., Fedeli, A., and Paolini, P. A language for a
relational data base management system. Proc. Sixth Annual
Princeton Conference on Information Science and Systems, March
1972, pp. 84-92.
5. Chamberlin0 D.D. and Boyce, R.F. SEQUEL: A structured
English query language. Proc. 1974 ACM SIGFIDET Workshop,
Ann Arbor, Michigan, April 1974, pp. 249-264.
6. Codasyl Data Base Task Group Report. ACM, April 1971.
7. Codd, E.F. A relational model of data for large shared data
banks. Comm. ACM 13, 6 (June 1970), 377-387.
8. Codd, E.F. Relational completeness of data base sub-
languages. Courant Computer Science Symposia, Vol. 6: Data
Base Systems. Prentice-Hall, Engelwood Cliffs, N.J. 1971.
9. Codd, E. F. A data base sublanguage founded on the rela-
tional calculus. Proc. 1971 ACM SIGFIDET Workshop, San
Diego, Calif, Nov. 1971, pp. 35-68.
10. Goldstein, R.C., and Strnad, A.L. The MACAIMS data
management system. Proc. 1970 ACM SIGFIDET Workshop,
Houston, Texas, pp. 201-229.
11. Lalonde, W.R., Lee, E.S., and Homing, J.J. An LALR(k)
parser generator. Proc. IFIPS Congress, 1971. Ljubljana, Yugo-
slavia. North-Holland Publishing Co., Amsterdam, 1972, 513-518.
12. Lorie, R.A. XRM--An extended (N-ary) relational memory.
Tech. Rep. 320-2096, IBM Scientific Center, Cambridge, Mass.,
Jan. 1974.
13. Lode, R.W., and Symonds, A.J. A relational access method
for interactive applications. In [8].
14. Peteul, B., and Lorie, R.A. Multisegment relational memory
users guide, IBM internal rep., Oct. 1973.

P r o g r a m m i n g G. M a n a c h e r
Techniques Ed i to r

Merging with
Parallel Processors
Ffinic~ Gavril
University of Illinois

Consider two linearly ordered sets A, B,] A [= m,
I B [= n, m _< n, and p, p _< m, para l le l processors
working synchronously. The paper presents an algorithm
for merging A and B with the p parallel processors,
which requires at most 2[log2(2m -}- 1)] + [3m/p] -t-
[m/p][log2(n/m)] steps. I f n = 2~m (/3 an integer),
the algorithm requires at most 2[log2(m -I- 1)] -[-
[m/p](2 + ~) steps. In the case where m and n are of the
same order of magnitude, i.e. n = k m with k being a
constant, the algorithm requires 2[log2(m -t- 1)] +
[m/p](3 -t- k) steps. These performances compare very
favorably with the previous best parallel merging
algorithm, Batcher's algorithm, which requires
nip + ((m + n)/2p)log2m steps in the general case and
km/p -}- ((k q- 1)/2)(m/p)log. . ,m in the special case
where n = km.

Key Words and Phrases. parallel processing, para l le l
merging , para l le l binary insertion

CR Categor ies : 5.31

Copyright @ 1975, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This work was supported in part by the National Science Foun-
dation under Grant No. GJ-41538.

Part of this work was done while the author was at the Weiz-
mann Institute of Science, Rehovot, Israel. Author's present
address: Department of Mathematical Sciences, Tel-Aviv University,
Ramat-Aviv, Tel-Aviv, Israel.

588 Communications October 1975
of Volume 18
the ACM Number 10

